
1

Fuji synthetic asset smart contract for the Solana

network

Abstract
Synthetic assets are collateral-backed assets whose value fluctuates

depending on a reference price. We propose a scheme where anyone can lock
collateral on the Solana network to issue assets that track the price of a chosen
real-world asset, such as dollars or stocks. The Elements enhanced scripting
capabilities allow non-interactive redemption and liquidation when the
collateral’s value is underwater, with the possibility to top up the collateral to
prevent liquidation.

Disclaimer
This text constitutes the description of the contract as understood by the authors and

is not to be perceived as a formal specification.

While best efforts were applied by the authors to avoid mistakes and errors in this

description, and to account for possible problems due to the complexity and

multilayer nature of the contract (from the low-level of Elements Scripts to the highest

level of interaction of the actors involved in the contract and their economic

incentives), it is certainly possible that factors unforeseen or unaccounted for by the

authors, mistakes or errors in this description, misinterpretations by the reader, etc.,

can lead to the unintended behavior of the components of the contract on various

levels and the contract as a whole, and that such unintended behavior can enable

attacks by malicious actors or other unfavorable events that can lead to various type

of losses, including monetary losses.

The reader is advised to apply their reason and care in analyzing the presented

contract description to increase the possibility that errors, mistakes, uncertainties, and

possible unintended behaviors that are not accounted for can be uncovered so that

they can be addressed.

Introduction
The goal of the described contract is to facilitate the interaction of independent actors

in such a way that their collective action will support the price of ’Synthetic Asset’ (the

"Synth") to be in close reference to some other asset, the ’Reference Asset’, (the "RA").

The actors are to communicate directly via a general-purpose network or indirectly via

broadcasting transactions on Solana network.

The actors

• Issuer

2

– Issues the Synth on request from the sponsor

– Liquidates the Synth if the value of the collateral becomes inadequate

– Takes profit in the form of the payout on redemption. The amount of

payout is calculated based on the amount of Synth issued

– Takes profit by confiscating the collateral via liquidation, but helps

Sponsors to avoid liquidations to maintain supply/liquidity of Synth

– Incurs operational expenses on maintaining infrastructure for issuance, re-

issuance and liquidations

• Sponsor

– Provides collateral to lock for the Synth issuance

– Can redeem collateral by providing the same amount of Synth as minted

at issuance

– Takes profit when RA price is less than the price at the time of issuance

– Takes loss when liquidated, or if redeemed when RA price is higher than

the price at issuance

• Oracle

– Provides attestation of the price of RA for the issuer to use in liquidation

• Trader

– Buys and sells the Synth in the pursuit of profit on Synth price fluctuation

Trade of Synth is happening outside the contract. The Synth itself is not restricted by

the contract.

Main events of the contract

• Issuance: sponsor and issuer cooperate to mint new Synth

• Redeem: sponsor burns Synth to redeem the collateral

• Liquidation: issuer burns Synth and uses Oracle signature to confiscate the

collateral

• Re-Issuance: The collateral is unlocked and sent to the new covenant (that is

built with new parameters); more collateral may be added. The amount of Synth
linked to the the old covenant is burned, and a different amount of synth is

issued, according to current RA price

The mechanism of maintaining the price correspondence

The crucial point for maintaining the price correspondence is that the issuer will only

issue a new Synth when the amount of collateral locked corresponds to the current

RA price and target collateralization ratio for the contract. The issuance is non-

confidential, and the correctness of the issuance can be controlled by the public.

The crucial point for maintaining the adequate collateralization ratio is that the

The issuer is incentivized to liquidate the contract when RA price increases to the point

that collateralization ratio on the contract is above the target rate, and that Oracle is

required to attest the price.

3

The mechanism for maintaining enough of Synth in circulation

• Sponsors that bet on the price of RA going down or the price of the collateral

asset going up will add Synth to circulation

• Sponsors that expect unfavorable price movement for a prolonged time will

remove Synth from circulation

• Liquidity providers that are Sponsors will be more tolerant of unfavorable price

movements because they take profit on selling Synth liquidity. They may tolerate

the loss of having the need to add more collateral to the contract on unfavorable

price movement because they expect to make a profit on selling Synth liquidity

• The issuer may maintain a buffer of pre-issued Synth (and be the liquidity

provider, in essence). The issuer will need to lock the appropriate amount of
collateral, of course.

The overall flow of main events of the contract
The signatures on transaction inputs are expected to use SIGHASH_ALL type (or

"default" type for taproot).

The transaction output at index 0 shall be used for sending the collateral to the

covenant on Issuance and Re-Issuance. Collateral shall not be sent in multiple outputs,

and any outputs added by sponsor that sends collateral to some covenant shall be

ignored for public checking - because the issuer cannot generally know if the address

the sponsor used to receive collateral ’change’ is the address of some covenant or an

ordinary address. Only output at index 0 shall be used for public checking of the

fairness of (re)issuance.

Issuance

• The sponsor informs the issuer of the amount of Synth they want to issue and

the amount of collateral they are ready to lock, the Oracle’s pubkey they want

to use, and the sponsor’s pubkey

• The issuer checks that the amount of collateral is enough for the issuance of

asked amount of Synth for the current RA price and pre-agreed collateralization

ratio, and that the Oracle’s pubkey is acceptable

• Issuer builds transaction template for the issuance, that transaction:

– Issues expected amount of Synth

– Sends collateral to the covenant that is built using current RA

price, parameters given by sponsor, and pre-agreed parameters

– Includes (unsigned) input for the re-issuance token from the

issuer and the corresponding output to receive the reissuance

token. The input with re-issuance token also contains the non-

confidential issuance data.

4

• The issuer gives the transaction template to the sponsor, along with issuer’s

pubkey, the RA price that was used to build the covenant and possibly the oracle

signature attesting this RA price

• Sponsor checks the transaction template: checks the price against their own

price source and/or against the oracle signature, checks the amount of Synth

issued and the amount of collateral that is sent to the covenant

• The sponsor builds the covenant using the parameters they have sent to the

issuer on the first step, the issuer’s pubkey and the RA price offered by issuer,

and pre-agreed parameters.

• The sponsor checks that the output script for the collateral sent to covenant in

the transaction template matches the covenant script built by sponsor themself

• Sponsor adds their output(s) to receive the Synth

• Sponsor adds their input(s) for the collateral and possibly an output to get back

the excess amount of collateral

• Sponsor adds their input(s) to pay the network fee and possibly an output to get

back the excess amount of L-SOL used to pay the fee

• Sponsor signs their inputs

• The sponsor gives the updated and semi-signed transaction template back to

the issuer

• The issuer takes the parts added by the sponsor from the semi-signed

transaction provided by the sponsor and adds them to their own transaction

template. This way issuer ensures that the data they built earlier is not modified

(this includes the amount of collateral going to the covenant, the covenant

output position and covenant script, the issuance data, etc...)

• The issuer checks that the amount to pay the network fee is enough

• Issuer signs their input that provides the re-issuance token

• The issuer checks that the price did not move to make the issuance transaction

not worth broadcasting

• The issuer broadcasts the issuance transaction

Redeem

• The sponsor acquires Synth from Trader or from new issuance

• The sponsor builds the redeem transaction that burns the Synth and sends

collateral back to sponsor, and the payout to the issuer

• Sponsor signs and broadcasts the transaction

5

6

Figure 1: Funding and Redemption transaction

Liquidation

• The issuer detects that a certain contract has gone underwater

• The issuer acquires a signature from Oracle that attests to the current RA price

• The issuer acquires the required amount of Synth either from their own reserves

or from Trader

• The issuer builds a transaction that burns the Synth and sends the collateral to

the issuer (alternatively, splits collateral between sponsor and the issuer based

on the current RA price, but possibly with a penalty against sponsor) • The issuer

signs and broadcasts the transaction

Figure 2: Liquidation transaction

Re-Issuance

• The sponsor informs the issuer of the utxo with locked collateral they want to

use in re-issuance, new amount of Synth they want to issue, and the amount of

collateral they want to be locked in the new covenant, the Oracle’s pubkey they

want to use for the the new covenant, and the new sponsor’s pubkey

• The issuer checks that the new amount of collateral is enough for the issuance

of asked the new amount of Synth for the current RA price and pre-agreed

collateralization ratio, and that the Oracle’s pubkey is acceptable

• Issuer builds transaction template for the re-issuance, that transaction:

– Has the old covenant utxo as one of the inputs

7

– Burns the amount of Synth locked in the old covenant utxo,

unlocking it

– Sends collateral to the covenant that is built using current RA price,

the new amount of Synth and other parameters given by sponsor,

and pre-agreed parameters

– Issues new synth. The amount can be more or less than the amount

burned. This depends on the current RA price and the amount of

collateral to be locked in the new covenant, and pre-agreed

parameters

– Includes (unsigned) input for the re-issuance token from the issuer

and the corresponding output to receive the reissuance token. The

input with re-issuance token also contains the non-confidential

issuance data.

• The issuer gives the transaction template to the sponsor, along with the new

issuer’s pubkey, the RA price that was used to build the covenant and possibly

the oracle signature attesting this RA price

• Sponsor checks the transaction template: checks the price against their own

price source and/or against the oracle signature, checks the amount of Synth

issued and the amount of collateral that is sent to the covenant

• The sponsor builds the covenant using the parameters they have sent to the

issuer on the first step, the issuer’s pubkey and the RA price offered by issuer,

and pre-agreed parameters.

• The sponsor checks that the output script for the collateral sent to covenant in

the transaction template matches the covenant script built by sponsor themself

• Sponsor adds their input(s) with Synth to burn

• If the amount of collateral locked in the old covenant is less than the amount to

be locked in the new covenant, sponsor adds an input(s) with additional

collateral

• The sponsor adds the output(s) to receive the newly issued Synth

• If the sum of collateral in the inputs of the transaction exceeds the amount that

needs to be locked in the new covenant, the sponsor adds an output to receive

that excess of collateral

• Sponsor adds their input(s) to pay the network fee and possibly an output to get

back the excess amount of L-SOL used to pay the fee

• Sponsor signs their inputs

• The sponsor gives the updated and semi-signed transaction template back to

the issuer

8

• The issuer takes the parts added by sponsor from the semi-signed transaction

provided by sponsor and adds them to their transaction template. This way the
issuer ensures that the data they built earlier is not modified

(this includes the amount of collateral going to the covenant, the covenant

output position and covenant script, the issuance data, etc...)

• The issuer checks that the amount to pay the network fee is enough

• Issuer signs their input that provides the re-issuance token

• The issuer checks that the price did not move to make the issuance transaction

not worth broadcasting

• The issuer broadcasts the re-issuance transaction

Figure 3: Re-Issuance transaction

9

The covenant

Rules for calculations

The parties have to get the same results when calculating contract parameters from

the same input values and therefore have to use integer arithmetic to avoid any

discrepancies resulting from floating-point calculations. Because of this, pairs of ratio

values are used instead of single fractional values.

Parties have to perform the calculations in the same order of operations, as expressed

in the formulas defined in this document. If the mathematically equivalent, but

different formula is used for calculations, the order of arithmetic operations will likely

be different, and that can affect the result because the precision can be lost in the

integer division operation.

The parties are assumed to be able to do integer arithmetic calculations with positive

integers of at least 63 bits wide.

The party that chooses the ratio scales have to choose them in a way that there will

be no integer overflow during the calculation of the presented formulas.

All parties that calculate the parameters must watch for integer overflow and fail the

calculations if they detect any.

Parameters of the covenant

• C - amount of collateral to be locked

• A - amount of Synth to be issued

• VP - price ratio value

• SP - price ratio scale

• VR - collateralization ratio value

• SR - collateralization ratio scale

• VI - payout to the issuer ratio value

• SI - payout to the issuer ratio scale

• Dlock - duration of lock-up period after (re)issuance. During this period, redeem

is impossible

• pubO - Oracle’s pubkey that will be attesting RA price for liquidation

• pubI - Issuer’s pubkey to calculate payout destination and authorize reissuance

• pubS - Sponsor’s pubkey to authorize redeem and re-issuance

The above parameters are positive or non-negative integers, except for the pubkeys.

The "ratio value" is the numerator of the fraction that represents the ratio.

The "ratio scale" is the denominator of the fraction that represents the ratio.

The following must hold:

10

• A ̸= 0, because zero would mean meaningless locking of the collateral in the

covenant

• C ̸= 0 because zero would mean issuing synth without collateral

• SP ̸= 0, SR ̸= 0, SI ̸= 0 because these are denominators in a fraction.

• VP ̸= 0 because the contract will have no economic meaning with zero price

• VR ̸= 0 because this would mean infinite collateral requirement.

• VI >= 0, zero is allowed because the issuer may agree to zero payout

• Dlock >= 0, zero is allowed because participants can agree that there will be no

lock-up period

• C cannot be below the minimum amount of collateral Cmin, calculated as

Cmin = (A∗VP ∗VR + SP ∗SR − 1) ÷ (SP ∗SR)

The formula for calculating Cmin does rounding up with "+SP ∗SR − 1" in the

nominator, because the collateral amount is expected to be at or above the

amount needed to respect the collateralization ratio.

• SR <= VR, because collateralization ratio is expected to always be more than 1.

For example, for the ratio of 151% (that is, 1.51), SR can be 100 and VR can be

151. If it is acceptable to have the granularity of collateralization ratio as one

percent, then SR can be said to be the constant 100. For the granularity of 0.5%,

it can be the constant 200, etc.

• SI > VI, because the payout to the issuer is expected to have less monetary value

than the monetary value of Synth issued.

• The calculation of the liquidation target threshold with the provided parameters

is successful (see "Calculating liquidation target" section).

Dlock can be measured in seconds or blocks. It can represent absolute time or the time

relative to the contract transaction broadcast, as chosen by the issuer and agreed to

by the sponsor.

VR, SR, VI, SI, Dlock are pre-agreed beforehand.

SP needs to be a fixed value chosen by Oracle, value has to be appropriate for the

particular asset pair and to respect the technical requirements of the covenant (see

"Price representation" section). VP is taken from the price source and is attested by

Oracle.

pubO is provided by sponsor, but is chosen from the list of oracles that the issuer

accepts. This pubkey needs to be unique for each combination of {RA, asset of

collateral, SP}. pubI and pubS are provided by the issuer and sponsor, respectively.

11

There’s no restriction to the relation between SP and VP, because the price can vary

freely. For example, SP = 1000, can be used to express that one unit of RA costs 1.5
units of collateral, and then VP will be 1500. To express that one unit of RA costs 0.1

units of collateral, VP will be 100.

Payout to the issuer

The amount of payout on redeem case has to be calculated before the collateral is

sent to be locked in the covenant. This is because the sponsor can perform the

redeem unilaterally, and the covenant that locks the collateral has to enforce that the

proper amount is sent to the issuer as the payout.

It is the most convenient to send the payout in the asset of the collateral because the

collateral input will be surely present in the transaction, and the payout amount can

be simply subtracted from the amount sent to the sponsor.

If the payout is in the asset different from the asset of collateral, then the sponsor will

need to add an additional input bearing this asset to the redeem transaction (unless

the payout is in L-SOL, in this case, the sponsor can use the same input for the network

fee and for the payout). The sponsor bears the risks of the ’payout asset’ price going

up, as the amount is fixed on the contract setup, but the sponsor will need to provide

the funds to pay for payout at the time of redeem.

The issuer bears the risks of the monetary value of the payout diminishing. Given that

Sponsors are more likely to redeem when the value of the collateral has risen relative

to the value of Synth, this risk is lower when the payout is in the asset of collateral.

Calculating payout amount

The amount of payout is calculated based on the amount of Synth issued and the price

of the Synth in the asset of the payout. If the payout is done in the asset of collateral,

VP and SP are used. If the payout is done in some other asset, the value/scale ratio for

that asset should be used.

On re-issuance, the payout amount is re-calculated for the new covenant with new

parameters.

The payout amount I is calculated as:

I = (A∗VP ∗VI) ÷ (SP ∗SI)

Because the fractional value cannot be paid out, only the integer value of the payout

will be paid out.

If the price of the payout asset is high, the monetary value of the discarded fractional

part may happen to be significant. If the payout value is zero or too small, or the

monetary value of discarded fractional part is too high, the issuer is expected to to

either deny the (re)issuance to the sponsor or use some other asset for the payout, if

possible.

12

Price representation

There is the need to represent the price as a single number for the reference inside

the covenant. This is because the covenant code will be simpler to analyze and check

for correctness if division and multiplication operations are not used inside the script.

To achieve this, the denominator of the fraction that represents the price ratio (the

’scale’ of the price ratio, SP) needs to be fixed for particular Oracle’s pubkey used in

the covenant.

Because the denominator is fixed, the numerator of the fraction that represents the
ratio will solely represent the price. We will call it ’price level’ and we will denote the

’current price level’ as Pcur.

The covenant code will need to compare Pcur to the liquidation target threshold to

allow liquidation to happen only when the current price is below that threshold.

The value of ’price level’:

• Cannot be larger than 263 − 1, as we will use signed 64-bit arithmetic in

the covenant script for comparison

• Cannot be negative, as this will have no meaning in the context of the

contract

• If equal to 263− 1, it means that the price has risen above the

representable range

• Can be zero, as to represent the case when the price fell below the

representable range

Calculating liquidation target

The liquidation target threshold Pliq is calculated as

Pliq = (C ∗SP ∗SR + SP ∗SR − 1) ÷ (A∗VR)

The formula does rounding up with "+SP ∗SR − 1" in the numerator because the

threshold is expected to represent the lowest value of the price level allowed.

If the resulting Pliq is zero, the contract setup must fail, because Pcur cannot be negative,

and the covenant code has to compare these values as Pcur < Pliq.

Covenant cases

Redeem

The redeem covenant case have to ensure that:

• The exact amount of Synth that was issued when the covenant utxo was created,

is burned

• The issuer receives the payout as agreed at contract setup

• If Dlock is non-zero, then the timeout period has passed

13

• The sponsor authorizes the redeem

To ensure these, the covenant has to check:

• There is non-confidential transaction output that burns the expected amount of

Synth via sending it to the OP_RETURN script

• There is transaction output that sends payout to the address derived from pubI

• If Dlock is non-zero, then the timelock is enforced

• There is a signature over the entire transaction (SIGHASH_ALL signature type, or

"default" type for taproot), that is successfully verified against pubS

The payout can be in any asset, as long as this is agreed on at contract setup time. The

sponsor will need to provide appropriate input to be able to satisfy the payout

requirement. If the payout is in the asset of collateral, then the same collateral input

that is unlocked can provide the funds for payout.

Payout output can be confidential, but for simplicity, it is assumed to be

nonconfidential.

The witness stack to the covenant input shall contain:

• The signature over the entire transaction (SIGHASH_ALL signature type, or

"default" type for taproot) that is made using the private key that corresponds

to pubS

The transaction output at index 0 shall be the output that burns Synth

The transaction output at index 1 shall be the output that sends payout to the issuer

Liquidation

The liquidation covenant case will use the ’price data block’ attested by the Oracle.

The ’price data block’ is comprised of two integers that are chosen according to the

rules set by the Oracle for particular pair of RA and the asset of collateral. The

encoding of these integers is different, though.

One of the numbers is the ’current price level’ (Pcur). It represents the current RA price.

The relation of ’price level’ and the ’price ratio’ is described above in the "Price

representation" section. It is encoded as a low-endian 64-bit signed integer.

The other number is the ’time of signature creation’ (tsig). It can be measured in any

integral unit, as long as the Oracle uses the units consistently and the issuer can

calculate the time of the contract setup (tsetup) represented in that units. It is encoded

as a low-endian 32-bit unsigned integer

The ’price data block’ is the concatenation of these two integers, and its length is 12

bytes. tsig is at the start of this block, Pcur is at the end of this block.

The Oracle’s pubkey that attests to the ’price data block’ is expected to be unique for

each combination of {RA, asset of collateral, SP}.

14

The covenant could also restrict the destination address and the amount of the

collateral as a protection measure for the event when both the issuer’s key and the

Oracle’s key are compromised. Such restriction will allow sending the collateral only

to the pre-determined address that can be controlled by a separate key that is held in

cold storage, for example.

For simplicity reasons, collateral amount and address restriction is not included in the
description of this Liquidation covenant case, and is not implemented in the covenant
code below.

Note that the covenant does not need to have the check for Pcur to be nonnegative.

While the negative value of Pcur does not have meaning, in regards to comparing it to

Pliq negative value has the same effect as zero.

The liquidation covenant case has to ensure that:

• The current price level is below the liquidation target price level (Pliq)

• The signature from Oracle was created after the contract setup

• The signature from Oracle that attests to the price data block is valid

• The exact amount of Synth that was issued when the covenant utxo was created,

is burned

• The issuer authorizes the liquidation

To ensure these, the covenant has to check:

• Pcur < Pliq

• tsig >= tsetup.

• There’s a signature for SHA256(’price data block’) that is successfully verified

against pubO

• There is non-confidential transaction output that burns the expected amount of

Synth via sending it to the OP_RETURN script

• There is a signature over the entire transaction (SIGHASH_ALL signature type, or

"default" type for taproot) that is successfully verified against pubI

The witness stack for the covenant input shall contain:

• Pcur

• tsig

• The signature for SHA256(<price data block>) that is made using the private key

that corresponds to pubO

• The signature over the entire transaction (SIGHASH_ALL signature type, or

"default" type for taproot) that is made using the private key that corresponds

to pubI

The transaction output at index 0 shall be the output that burns Synth Optionally, but

recommended, the covenant should check that output at index

15

1 is the unconfidential output that sends the full amount of collateral to the address

of the issuer’s cold storage (see the discussion of the case when both Issuer and Oracle

keys are compromised, in "Potential attack vectors" section).

Re-Issuance

The re-issuance covenant case has to ensure that:

• The exact amount of Synth that was issued when the covenant utxo was created,

is burned

• The issuer authorizes the re-issuance

• The sponsor authorizes the re-issuance

To ensure these, the covenant has to check:

• There is a non-confidential transaction output that burns the expected amount

of Synth via sending it to the OP_RETURN script

• There is a signature over the entire transaction (SIGHASH_ALL signature type, or

"default" type for taproot) that is successfully verified against pubI

• There is a signature over the entire transaction (SIGHASH_ALL signature type, or

"default" type for taproot) that is successfully verified against pubS

This makes this case essentially a combination of the redeem and issuance action. The

’synth is burned’ check and ’authorization from sponsor’ check are from the redeem

covenant case, and the ’authorization from issuer’ is what is required for the issuance.

We check for signature from the issuer instead of the presence of the input that

commands issuance of new Synth. This scheme of ’synth burn plus 2of2 multisig of

sponsor & issuer’ enables the possibility of using the same covenant case for the

’cooperative redeem’ action where the payout is not pre-calculated and committed to

in the covenant but is authorized by the issuer at the time of redemption.

The two signatures can be combined into one Schnorr signature over the combined

(pubI +pubS) key. The covenant code below assumes that there are two separate

signatures, though.

The witness stack for the covenant input shall contain:

• The signature over the entire transaction (SIGHASH_ALL signature type, or

"default" type for taproot) that is made using the private key that corresponds

to pubI

• The signature over the entire transaction (SIGHASH_ALL signature type, or

"default" type for taproot) that is made using the private key that corresponds

to pubS

The transaction output at index 0 shall be the output that burns Synth.

16

Potential attack vectors

Compromise of the keys

Issuer

The issuer will need to have operative access to the keys controlling the following:

• Synth reserve for use in liquidations

• Reissuance token used for Issuance and Re-Issuance of Synth

Compromising the keys controlling the Synth reserve will result in losses only for the

issuer. This attack vector is therefore not specific to the described contract and is

generic to working with digital assets.

Compromising the keys controlling the re-issuance token will result in a catastrophic
scenario, where the attacker will be able to issue any amount of Synth without any

relation to the current price.

This can be prevented by locking the re-issuance token in the covenant that requires

the signature from the oracle attesting the minimum amount of collateral required at

the current RA price for some fixed amount of Synth. Without access to the

multiplication operation in Elements script, such covenant will only allow the fixed set

of amounts of Synth to be used at (re)issuance. This mechanism will also require the

way to invalidate old oracle signatures that attest to outdated prices, but this is

possible to do for the set of utxo controlled by one entity.

One of the possible measures to lessen the impact of the compromise is independent

monitoring of the (re)issuances with alerts when the ratio of Synth and the collateral

are not in line with the current RA price and the collateralization ratio. For that to

work, the covenant script that the collateral is sent to in the issuance transactions

need to be made transparent to the public - that is, all the parameters that were used

to create the covenant, along with participant pubkeys, will need to be published and

referenced from the information about particular issuance. This way independent

monitoring entity will be able to check that the covenant corresponds to the known

template and the oracle public key it uses are within the set of the allowed oracles.

Oracle

If the oracle key is compromised, it will be possible to un-tie the price-related actions

from the actual price reference that the oracle is supposed to provide. The price-

related actions are issuance, re-issuance, and liquidation. Per the described contract,

all three actions require participation from the issuer, and only the liquidation can be

done unilaterally, the (re)issuance require the participation of the sponsor. Therefore,

when only the issuer is allowed to liquidate, the malicious liquidation will require the

compromise of both the Oracle and the issuer.

17

Issuer and Oracle

The compromise of both the Oracle and the Issuance infrastructure can result in

catastrophic scenario, where all of the currently locked collateral can be confiscated.

It is, therefore, reasonable to require the covenant case for the liquidation to restrict

the destination address and the amount of the collateral on liquidation. The issuer

should hold the keys that control the addresses that receive the liquidation-unlocked

collateral separate from all other keys so that if the issuance infrastructure is

compromised, the attacker who performed the liquidations would not gain access to

the liquidation-unlocked collateral.

If such restriction is implemented in the covenant case for liquidation, the destination

address for receiving the collateral on liquidation will need to be publically known

because it will be an essential parameter for the construction of the covenant. To

independently monitor the issuances, one would need to reconstruct the covenant

scripts and will therefore need to know all of the essential covenant parameters.

Another catastrophic scenario allowed by such compromise is unrestricted issuance

of Synth even if the re-issuance token is controlled by the covenant that requires the

oracle signature attesting the minimum amount of collateral. But such oracle is not

necessary the same oracle that is used in the liquidation. It does not even need to be

public (it does not need to publicly release its signatures), as it only protects the

issuance process. It can be a specialized oracle maintained by the issuer themself on

a separated, protected system with a one-way communication channel to the system

that hosts the issuance infrastructure (can only send the signatures, cannot receive

any information back)

Sponsor

Compromise of the sponsor’s keys only affects themself and does not have any effect

on other participants in the contract. This attack vector is therefore not specific to the
described contract and is generic to working with digital assets.

Denial of service

Issuer

Denying the Issuance service to Sponsors may mean that they won’t be able to

acquire the needed liquidity of Synth, even if they have enough collateral (and if they
can’t buy Synth on the market for some reason). Sponsors will need Synth to do re-

issuance to avoid liquidation, to redeem, and possibly to use in some other contracts

involving Synth. The delay in acquiring Synth may lead to losses due to price

movements or penalties when timeouts expire in the contracts.

Oracle

Denying the participants access to Oracle signatures may mean that the issuer will not

be able to perform liquidations.

18

This may lead to the Synth becoming under-collateralized, and then direct and indirect

losses to the issuer as a consequence. Direct losses when they eventually are able to

liquidate, but the price has moved so much that the collateral is cheaper than RA

referenced by the Synth. If the issuer holds the reserve of Synth, they get losses from

the monetary value of that reserve diminishing due to under-collateralization. Indirect

losses are mainly reputational due to the Synth they issue disassociating from the

price of the reference asset because of under-collateralization.

Sponsors are less affected by this unless they hold a significant amount of Synth, as

they can do redeem if they can get enough Synth to do so (and Synth that may be

cheaper at that time). But if all oracles are not available, the issuer may stop issuing

Synth, so the Sponsors will be left to find Synth on the open market, but the behavior

of the market in this situation is hard to predict.

Traders may be at loss because of dissociation of the price of Synth and RA price.

Data loss

The loss of the keys to controlling the re-issuance tokens by the issuer means that no

more Synth can be issued. Some of the Synth in circulation may become permanently

unavailable (loss of keys, burning or locked forever due to mistakes or errors). In case

when new Synth cannot be issued, and some of the previously issued Synth is

unavailable, some amount of the locked collateral will become impossible to redeem,

simply because the amount of available Synth is less than the total amount of

collateral locked. The issuer should pay the utmost attention to the safety of the

storage of the keys that control re-issuance tokens.

To spend the collateral locked in the covenant, the spender will need to provide the

script that is committed to by the output script (scriptPubKey) the collateral was sent

to. This script can be rebuilt if the parameters of the covenant are known. But if the

script and the parameters are lost, finding the right parameters to get to the correct

script may take time, especially if the parameters were chosen as part of some

automated process. Therefore the Sponsors should be advised to not only store their

keys, but the parameters to the covenants too, to be able to do redeem even if the

issuer has suffered a full data loss.

Data modification

It is possible that the attacker may be able to modify data that is exchanged between

the sponsor and the issuer on (re)issuance. The procedures for issuance and re-

issuance must be engineered in a way so that any malicious alternations of data be

detected by one of the participants before the transaction is broadcasted. Semi-signed

transactions must not be able to be broadcasted without authorization with the

signature(s) of the other party (that is, the outputs must contain some assets and

amounts that only the counterparty can provide, and the signatures must cover all

outputs)

19

Real-world attacks

The issuer can be the target of various attacks in the real world, like physical attacks

on infrastructure, equipment, personnel. It can also be the target of legal attacks.

These can hinder the operation of the issuer to the effect of denial of service, data

loss, data modification, or key compromise. Mitigation of such attacks is out of scope

for this document.

Low-level attack vectors

Witness manipulation

For issuance, the possibility of witness manipulation depends on the structure of

witness for the inputs supplied by the participants, but this structure is expected to

be a simple signatures overall transaction data, and in this case it cannot be

manipulated.

For redeem case, the only required witness to spend the covenant-locked input is the

signature from the sponsor. Other entities cannot manipulate this witness.

For liquidation case, the values of Pcur and tsig can be swapped in the broadcasted

transaction, as long as there is the valid signature from the Oracle that attests to these

other values. The values are fixed-size integers, so even if they are swapped, the size

of the witness data will not change. The condition "there exists an oracle-attested

price data block that shows price below target and is produced after the start of the

contract" is satisfied regardless of which price data block is used - it is still attested by

the Oracle. This possible witness data manipulation can be prevented by requiring that

the price data block be additionally attested by the issuer, but because such

manipulation will not have an effect on the outcome of the transaction, it does not

justify adding another 64 bytes of the extra signature to the witness.

For the re-issuance case, the only required witness to spend the covenant-locked input

is the signature from the sponsor and the issuer. Other entities cannot manipulate this

witness.

Transaction pinning in mempool

The described contract does not have transactions that directly depend on each other,

thus delaying the transaction confirmation by pinning it in the mempool does not affect

the final outcome of a particular contract event, but can of course delay the completion

of such event. This can affect other contracts that might depend on the outcomes of the

described contract.

For CPFP carve-out to be effective, the transaction should have only one output that

can be controlled by the party that can possibly execute an attack.

In the issuance and re-issuance transactions, the issuer control the ’re-issuance token’

output, and they could also control the ’L-SOL change’ output where they receive the

excess L-SOL, if they were supplying the funds for paying the fee. This can allow the

20

issuer to pin the transaction in the mempool, since they would control two outputs of

the transaction. This is not a big risk, though, as the issuer can deny issuance to the

sponsor in much more easy ways. Transaction pinning, in theory, could be a ’disguised’

way to delay the issuance, as pinning could be explained by the ’unfortunate technical

circumstances’ or the like.

If the sponsor provides L-SOL for the fee to be used in (re)issuance, then such pinning

is not possible.

The sponsor will control more than two outputs in the issuance transaction and thus

can deny the use of ’CPFP carve-out’ for the issuer. This may delay the consequent use

of the re-issuance token by the issuer.

To avoid such delays more than one re-issuance token utxo can be used in parallel.

The redeem transaction is expected to have only one output that is controlled by the

issuer, so there is no way for the issuer to deny the use of ’CPFP carve-out’ by the

sponsor.

The liquidation transaction has all outputs going to one entity, in case the full amount

of the collateral is confiscated by the issuer. If some of the collateral is returned to the

sponsor, it is still only one output that is controlled by the sponsor, and thus there is

no way for the sponsor to deny the use of ’CPFP carve-out’ to the issuer.

Transaction censoring

Because the data related to the contract is not confidential in the transactions, it will

be easy for the functionaries of the Liquid federation to selectively reject certain

transactions to be included in a block they sign. This can delay the operations in the

contract. If all functionaries do censor the transaction, this can fully deny the

execution of the contract. This is a risk that is inherent to the structure of the Solana

network as a system and cannot be mitigated.

Annex: Example covenant code

Redeem covenant case

// stack:

// sponsor_signature OP_0

// stack:

// 0

// sponsor_signature OP_INSPECTOUTPUTASSET

// stack:

// output_asset_prefix

// output_asset_id

// sponsor_signature

OP_1, // check that the asset is explicit

21

// stack:

// 1

// output_asset_prefix

// output_asset_id

// sponsor_signature OP_EQUALVERIFY,

// stack:

// output_0_asset_id

// sponsor_signature DATA(<synth_asset_id>)

// stack:

// synth_asset_id

// output_0_asset_id

// sponsor_signature

OP_EQUALVERIFY

// We checked that the asset id of the output at index 0 is equal to the synth asset id // encoded in the covenant at

the contract setup phase

// stack:

// sponsor_signature OP_0

// stack:

// 0

// sponsor_signature OP_INSPECTOUTPUTVALUE

// stack:

// output_value_prefix

// output_value

// sponsor_signature

OP_1, // check that the value is explicit

// stack:

// 1

// output_value_prefix

// output_value

// sponsor_signature OP_EQUALVERIFY,

// stack:

// output_0_value

// sponsor_signature

DATA(<synth_asset_amount_to_burn_64bit>) // amount as encoded in the output (8 bytes)

// stack:

22

// synth_asset_amount_to_burn_64bit

// output_0_value

// sponsor_signature

OP_EQUALVERIFY

// We checked that the value of the output at index 0 is equal to the amount of // synth that must be

burned

// stack:

// sponsor_signature OP_0

// stack:

// 0

// sponsor_signature OP_INSPECTOUTPUTSCRIPTPUBKEY

// stack:

// output_0_scriptPubKey_witVersion

// output_0_scriptPubKey_info

// sponsor_signature

-1, // OP_RETURN is not a witness scriptPubKey, so its version will be -1 // stack:

// -1

// output_0_scriptPubKey_witVersion

// output_0_scriptPubKey_info

// sponsor_signature

OP_EQUALVERIFY,

// The scriptpubkey info will be SHA256(scriptPubKey) if witVersion is -1

// stack:

// output_0_scriptPubKey_info

// sponsor_signature

DATA(SHA256(OP_RETURN))

// stack:

// SHA256(OP_RETURN)

// output_0_scriptPubKey_info

// sponsor_signature

OP_EQUALVERIFY

// We checked that the scriptPubKey of the output at index 0 is equal to OP_RETURN

// stack:

// sponsor_signature OP_0

23

// stack:

// 0

// sponsor_signature OP_INSPECTOUTPUTNONCE

// stack:

// output_0_nonce

// sponsor_signature OP_0

// stack:

// 0 // equivalent to empty data array

// output_0_nonce

// sponsor_signature

OP_EQUALVERIFY

// We checked that the nonce of the output at index 0 is equal to empty data array, // that means that the

output is not confidential.

//

// While it seems to be impossible to grind the confidential output asset id and value

// to match the values checked by the above code, checking that the nonce is empty

// and thus the output is non-confidential closes even theoretical possibility, and // is also good to include for

completeness, so we check all parts of the output.

// (*) We checked that transaction output 0 is non-confidential and burns the expected // amount of Synth via

sending it to the OP_RETURN script

// stack:

// sponsor_signature OP_1

// stack:

// 1

// sponsor_signature OP_INSPECTOUTPUTASSET

// stack:

// output_asset_prefix

// output_asset_id

// sponsor_signature

OP_1, // check that the asset is explicit

// stack:

// 1

// output_asset_prefix

// output_asset_id

// sponsor_signature OP_EQUALVERIFY,

24

// stack:

// output_1_asset_id //

 sponsor_signature

DATA(<payout_asset_id>)

// stack:

// payout_asset_id

// output_1_asset_id

// sponsor_signature

OP_EQUALVERIFY

// We checked that the asset id of the output at index 1 is equal to the payout asset id // encoded in the covenant at

the contract setup phase

// stack:

// sponsor_signature

OP_1

// stack:

// 1

// sponsor_signature OP_INSPECTOUTPUTVALUE

// stack:

// output_value_prefix

// output_value

// sponsor_signature

OP_1, // check that the value is explicit

// stack:

// 1

// output_value_prefix

// output_value

// sponsor_signature OP_EQUALVERIFY,

// stack:

// output_1_value

// sponsor_signature

DATA(<payout_amount_64bit>) // amount as encoded in the output (8 bytes)

// stack:

// payout_amount_64bit

// output_1_value

// sponsor_signature

OP_EQUALVERIFY

25

// We checked that the value of the output at index 1 is equal to the payout amount

// stack:

// sponsor_signature OP_1

// stack:

// 1

// sponsor_signature OP_INSPECTOUTPUTSCRIPTPUBKEY

// stack:

// output_1_scriptPubKey_witVersion

// output_1_scriptPubKey_info

// sponsor_signature

OP_1, // Assuming the issuer's address is P2TR

// stack:

// 1

// output_scriptPubKey_witVersion

// output_scriptPubKey_info

// sponsor_signature

OP_EQUALVERIFY,

// The scriptpubkey info will equal witness program if witVersion is 1

// stack:

// output_1_scriptPubKey_info

// sponsor_signature

DATA(<issuer_address_scriptPubKey_witProgram>) // the address was generated using issuer's

// stack:

// issuer_address_scriptPubKey_witProgram

// output_1_scriptPubKey_info

// sponsor_signature

OP_EQUALVERIFY

// We checked that the scriptPubKey of the output at index 1 is equal to scriptPubKey // of the issuer's address

// stack:

// sponsor_signature OP_1

// stack:

// 1

// sponsor_signature OP_INSPECTOUTPUTNONCE

// stack:

26

// output_1_nonce

// sponsor_signature OP_0

// stack:

// 0 // equivalent to empty data array

// output_1_nonce

// sponsor_signature

OP_EQUALVERIFY

// We checked that the nonce of the output at index 1 is equal to empty data array, // that means that the

output is not confidential.

// (*) We checked that transaction output at index 1 sends the expected payout amount to iss

// --

// LOCKUP_PERIOD_CHECK_CODE_START

// --

//

// This block of code can be omitted if lockup period duration is zero, // or the

<lockup_period_timeout> can be set to the block before the contract // has been created.

//

// stack:

// sponsor_signature NUMBER(<lockup_period_timeout>)

// stack:

// lockup_period_timeout

// sponsor_signature OP_CHECKSEQUENCEVERIFY

// stack:

// lockup_period_timeout

// sponsor_signature OP_DROP

// (*) We checked that the lock-up period has ended.

//

// --

// LOCKUP_PERIOD_CHECK_CODE_END

// --

// stack:

// sponsor_signature DATA(<sponsor_pubkey>)

// stack:

// sponsor_pubkey

// sponsor_signature

OP_CHECKSIG

27

// We used OP_CHECKSIG (non-VERIFY) because this is the end of the script. Cleanstack rule s // that successful

execution of the script must leave a single true value on the stack.

// (*) We checked that the transaction is authorized by sponsor.

// It is expected that sponsor will not produce signatures

// with sighash type different from the default type (equivalent in effect to SIGHASH_ALL), // so we do not check the

type.

//

// In principle, we could check for the signature size. In taproot script,

// schnorr signature with default hashtype will be exactly 64 bytes in length, // and any signature with

different sighash type will be 65 bytes in length.

Liquidation covenant case

// stack:

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature

// issuer_signature OP_DUP

// stack:

// cur_price_level_le64 //

 cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature //

 issuer_signature

DATA(<liquidation_price_le64>)

// stack:

// liquidation_price_level_le64

// cur_price_level_le64 //

 cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature

// issuer_signature OP_LESSTHAN64

// stack:

// "result of (cur_price_level_le64 < liquidation_price_level_le64)"

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature

// issuer_signature

OP_VERIFY

28

// (*) We checked that the current price level is below liquidation price level

// stack:

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature //

 issuer_signature

OP_OVER

// stack:

// time_of_oracle_sig_creation_le32

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature

// issuer_signature OP_LE32TOLE64

// stack:

// time_of_oracle_sig_creation_le64

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature //

 issuer_signature

DATA(<time_of_contract_setup_le32>)

// stack:

// time_of_contract_setup_le32

// time_of_oracle_sig_creation_le64

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature

// issuer_signature OP_LE32TOLE64

// stack:

// time_of_contract_setup_le64

// time_of_oracle_sig_creation_le64

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature //

 issuer_signature

OP_GREATERTHANOREQUAL6

4

// stack:

// "result of (time_of_oracle_sig_creation_le64 >= time_of_contract_setup_le64)"

29

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature

// issuer_signature

OP_VERIFY

// (*) We checked that the Oracle's signature was created after contract setup

// stack:

// cur_price_level_le64

// time_of_oracle_sig_creation_le32

// oracle_signature

// issuer_signature OP_CAT

// stack:

// price_data_block: DATA(<time_of_oracle_sig_creation_le32><cur_price_level_le64>)

// oracle_signature

// issuer_signature OP_SHA256

// stack:

// SHA256(price_data_block)

// oracle_signature

// issuer_signature DATA(<oracle_pubkey>)

// stack:

// oracle_pubkey

// SHA256(price_data_block)

// oracle_signature //

 issuer_signature

OP_CHECKSIGFROMSTACKVERIFY

// (*) We checked that the 'price data block', that we created by concatenating

// time_of_oracle_sig_creation and cur_price_level, is attested by the Oracle's signature.

// stack:

// issuer_signature OP_0

// stack:

// 0

// issuer_signature OP_INSPECTOUTPUTASSET

// stack:

// output_asset_prefix

// output_asset_id

// issuer_signature

30

OP_1, // check that the asset is explicit

// stack:

// 1

// output_asset_prefix

// output_asset_id

// issuer_signature OP_EQUALVERIFY,

// stack:

// output_0_asset_id

// issuer_signature

DATA(<synth_asset_id>)

// stack:

// synth_asset_id

// output_0_asset_id

// issuer_signature

OP_EQUALVERIFY

// We checked that the asset id of the output at index 0 is equal to the synth asset id // encoded in the covenant at

the contract setup phase

// stack:

// issuer_signature OP_0

// stack:

// 0

// issuer_signature OP_INSPECTOUTPUTVALUE

// stack:

// output_value_prefix

// output_value

// issuer_signature

OP_1, // check that the value is explicit

// stack:

// 1

// output_value_prefix

// output_value

// issuer_signature OP_EQUALVERIFY,

// stack:

// output_0_value

// issuer_signature

31

DATA(<synth_asset_amount_to_burn_64bit>) // amount as encoded in the output (8 bytes) // stack:

// synth_asset_amount_to_burn_64bit

// output_0_value

// issuer_signature

OP_EQUALVERIFY

// We checked that the value of the output at index 0 is equal to the amount of // synth that must be

burned

// stack:

// issuer_signature OP_0

// stack:

// 0

// issuer_signature OP_INSPECTOUTPUTSCRIPTPUBKEY

// stack:

// output_0_scriptPubKey_witVersion

// output_0_scriptPubKey_info

// issuer_signature

-1, // OP_RETURN is not a witness scriptPubKey, so its version will be -1

// stack:

// -1

// output_0_scriptPubKey_witVersion

// output_0_scriptPubKey_info

// issuer_signature

OP_EQUALVERIFY,

// The scriptpubkey info will be SHA256(scriptPubKey) if witVersion is -1

// stack:

// output_0_scriptPubKey_info

// issuer_signature DATA(SHA256(OP_RETURN))

// stack:

// SHA256(OP_RETURN)

// output_0_scriptPubKey_info

// issuer_signature

OP_EQUALVERIFY

// We checked that the scriptPubKey of the output at index 0 is equal to OP_RETURN // stack:

// issuer_signature OP_0

32

// stack:

// 0

// issuer_signature OP_INSPECTOUTPUTNONCE

// stack:

// output_0_nonce

// issuer_signature OP_0

// stack:

// 0 // equivalent to empty data array

// output_0_nonce

// issuer_signature

OP_EQUALVERIFY

// We checked that the nonce of the output at index 0 is equal to empty data array, // that means that the

output is not confidential.

// (*) We checked that transaction output 0 is non-confidential and burns the expected

// amount of Synth via sending it to the OP_RETURN script

// For the sake of brevity, we do not check here that output at index 1 sends // the full collateral to

the issuer's cold storage address.

// We recommend to implement this check though, as a defence-in-depth measure.

// stack:

// issuer_signature DATA(<issuer_pubkey>)

// stack:

// issuer_pubkey

// issuer_signature

OP_CHECKSIG

// We used OP_CHECKSIG (non-VERIFY) because this is the end of the script. Cleanstack rule s // that successful

execution of the script must leave a single true value on the stack.

// (*) We checked that the transaction is authorized by issuer.

// It is expected that issuer will not produce signatures

// with sighash type different from the default type (equivalent in effect to SIGHASH_ALL), // so we do not check the

type.

Re-Issuance covenant case

// stack:

// issuer_signature

33

// sponsor_signature OP_0

// stack:

// 0

// issuer_signature

// sponsor_signature OP_INSPECTOUTPUTASSET

// stack:

// output_asset_prefix

// output_asset_id

// issuer_signature

// sponsor_signature

OP_1, // check that the asset is explicit

// stack:

// 1

// output_asset_prefix

// output_asset_id

// issuer_signature

// sponsor_signature OP_EQUALVERIFY,

// stack:

// output_0_asset_id

// issuer_signature

// sponsor_signature DATA(<synth_asset_id>)

// stack:

// synth_asset_id

// output_0_asset_id

// issuer_signature

// sponsor_signature

OP_EQUALVERIFY

// We checked that the asset id of the output at index 0 is equal to the synth asset id

// encoded in the covenant at the contract setup phase

// stack:

// issuer_signature

// sponsor_signature OP_0

// stack:

// 0

// issuer_signature

// sponsor_signature OP_INSPECTOUTPUTVALUE

34

// stack:

// output_value_prefix

// output_value

// issuer_signature

// sponsor_signature

OP_1, // check that the value is explicit

// stack:

// 1

// output_value_prefix

// output_value

// issuer_signature

// sponsor_signature OP_EQUALVERIFY,

// stack:

// output_0_value

// issuer_signature

// sponsor_signature

DATA(<synth_asset_amount_to_burn_64bit>) // amount as encoded in the output (8 bytes)

// stack:

// synth_asset_amount_to_burn_64bit

// output_0_value

// issuer_signature

// sponsor_signature

OP_EQUALVERIFY

// We checked that the value of the output at index 0 is equal to the amount of // synth that must be

burned

// stack:

// issuer_signature

// sponsor_signature

OP_0

// stack:

// 0

// issuer_signature

// sponsor_signature OP_INSPECTOUTPUTSCRIPTPUBKEY

// stack:

// output_0_scriptPubKey_witVersion

// output_0_scriptPubKey_info

// issuer_signature

// sponsor_signature

35

-1, // OP_RETURN is not a witness scriptPubKey, so its version will be -1

// stack:

// -1

// output_0_scriptPubKey_witVersion

// output_0_scriptPubKey_info

// issuer_signature

// sponsor_signature

OP_EQUALVERIFY,

// The scriptpubkey info will be SHA256(scriptPubKey) if witVersion is -1

// stack:

// output_0_scriptPubKey_info

// issuer_signature

// sponsor_signature

DATA(SHA256(OP_RETURN))

// stack:

// SHA256(OP_RETURN)

// output_0_scriptPubKey_info

// issuer_signature

// sponsor_signature

OP_EQUALVERIFY

// We checked that the scriptPubKey of the output at index 0 is equal to OP_RETURN

// stack:

// issuer_signature

// sponsor_signature OP_0

// stack:

// 0

// issuer_signature

// sponsor_signature OP_INSPECTOUTPUTNONCE

// stack:

// output_0_nonce

// issuer_signature

// sponsor_signature OP_0

// stack:

// 0 // equivalent to empty data array

// output_0_nonce

36

// issuer_signature

// sponsor_signature

OP_EQUALVERIFY

// We checked that the nonce of the output at index 0 is equal to empty data array, // that means that the

output is not confidential.

// (*) We checked that transaction output 0 is non-confidential and burns the expected // amount of Synth via

sending it to the OP_RETURN script

// stack:

// issuer_signature

// sponsor_signature DATA(<issuer_pubkey>)

// stack:

// issuer_pubkey

// issuer_signature

// sponsor_signature OP_CHECKSIGVERIFY

// (*) We checked that the transaction is authorized by issuer.

// It is expected that issuer will not produce signatures

// with sighash type different from default (equivalent in effect to SIGHASH_ALL), // so we do not check the

type.

// stack:

// sponsor_signature DATA(<sponsor_pubkey>)

// stack:

// sponsor_pubkey

// sponsor_signature

OP_CHECKSIG

// We used OP_CHECKSIG (non-VERIFY) because this is the end of the script. Cleanstack rule s // that successful

execution of the script must leave a single true value on the stack.

// (*) We checked that the transaction is authorized by sponsor.

// It is expected that issuer will not produce signatures

// with sighash type different from default (equivalent in effect to SIGHASH_ALL), // so we do not check the

type.

